

www.nipponsteel.com

2-6-1 Marunouchi, Chiyoda-ku,Tokyo 100-8071 Japan Tel: +81-3-6867-4111 Sulfuric Acid and Hydrochloric Acid Dew-point Corrosion-resistant Steel S-TEN™ A012en_02_202004f © 2019, 2020 NIPPON STEEL CORPORATION

uric Acid and Hydrochloric Acid Dew-point Corrosion-resistant Stee

Features

- **S**-TEN is a sulfuric acid and hydrochloric acid dew-point corrosion-resistant steel developed by **NIPPON STEEL using proprietary technology.**
- S-TEN exhibits the best resistance to sulfuric acid and hydrochloric acid dew-point corrosion found in the flue-gas treatment equipment used with coal-fired boilers, waste incineration plants, etc. (This steel has the finest application record in the field of thermal power generation and waste incineration plants, according to surveys conducted by NIPPON STEEL)
- S-TEN was awarded the Ichimura Industrial Award Achivement Award in 2007
- S-TEN has strength, workability and weldability that are comparable to ordinary steel.
- ◆ S-TEN is more economical than stainless steel.
- ◆ S-TEN offers a rich product line ranging from hotrolled sheets (plates), cold-rolled sheets and pipe and tubes to welding materials.
 - Hot-rolled sheets (plates) conform to JIS G 3106 SM400A (S-TEN 1) and SM490A (S-TEN 2).
- S-TEN products are easily available because they are constantly stocked by retailers.

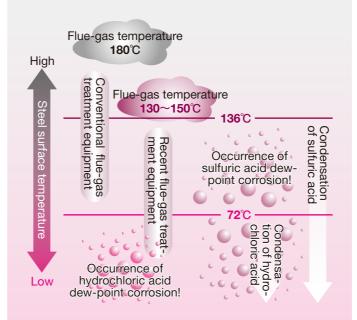
1. Characteristics of S-TEN

Sulfuric Acid and Hydrochloric Acid Dew-point Corrosion

Recently, environmental issues are becoming pressing concerns. In parallel with this, construction of tall smokestacks, air preheaters, electrostatic precipitators and flue-gas desulfurizers and other treatment equipment has shown great strides.

In the flue gas treatment process of plants using coal and oil as fuels, improvement of desulfurization efficiency is aimed, and as a result, low temperature corrosion due to sulfur oxide is a big problem.

The low-temperature section corrosion is the corrosion caused by high-temperature, highly-concentrated sulfuric acid, called sulfuric acid dew-point corrosion. This kind of corrosion differs from general atmospheric corrosion and causes heavy corrosion of not only ordinary steel but even stainless steel.


Further, because of the remarkable technological developments recently seen in dioxin countermeasures, flue-gas temperatures are increasingly being reduced from previous levels. In conventional facilities where, formerly, only sulfuric acid dew-point corro-

sion occurred, there are now cases of hydrochloric acid dew-point corrosion that is caused by lower flue-gas temperatures resulting from remodeling with countermeasures against dioxins.

to sulfuric acid dew point corrosion.

Grade	Sulfuric Acid Dew Point Corrosion Resistance	Hydrochloric Acid Dew Point Corrosion Resistance
S-TEN 1	0	0
S-TEN 2	0	_

Fig. 1.1 Waste Incineration Facility: Mechanism of Sulfuric Acid and Hydrochloric Acid Dew-point Corrosion Occurring in Flue-gas Treatment System

In the case of flue-gas composition (SO3: 3 ppm, HCl: 300 ppm, H2O: 30%)

CONTENTS

Notice: While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by NIPPON STEEL CORPORATION with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the NIPPON STEEL CORPORATION office for the latest information. Please refrain from unauthorized reproduction or copying of the contents of this publication.

The names of our products and services shown in this publication are trademarks or registered trademarks of NIPPON STEEL CORPORATION, affiliated companies, or third parties granting rights to NIPPON STEEL CORPORATION or affiliated companies. Other product or service names shown may be trademarks or registered trademarks of their respective owners.

Developed to solve these problems is S-TEN - steel for welded structures, highly resistant to sulfuric acid and hydrochloric acid dew-point corrosion.

S-TEN 1 has effective resistance to both sulfuric acid dew point corrosion and hydrochloric acid dew point corrosion, while S-TEN 2 is effectively resistant

⊖:Excellent

Photo 1.1 Example of Hydrochloric Acid Dew-point Corrosion in Internal Cylinder of Stack

Advantages of S-TEN

Ordinary or stainless steel cannot be used in applications in which sulfuric acid dew-point corrosion is a governing factor. Neither can weathering steels such as COR-TEN™ provide satisfactory performance in these applications.

The material appropriate for these applications is S-TEN.

Fig.1.6 shows the results of sulfuric acid immersion tests conducted under the conditions of temperature and concentration obtained from Fig.1.5.

Extremely severe corrosion occurs under the conditions of 70°C and 50% H₂SO₄. However, under such conditions, S-TEN exhibits corrosion resistance about five times greater than both ordinary steel and COR-TEN and about 10 times that of stainless steel. It is in such severe application environments that S-TEN shows the best performance.

In this way, corrosion caused by high-temperature, highly concentrated sulfuric acid differs from common atmospheric corrosion. Not only ordinary steel but stainless steel, as well, is heavily corroded in environments of high-temperature, highly concentrated sulfuric acid (in some cases, exceeding a corrosion rate of 5 mm/year).

Fig.1.7 shows the clear differences in corrosion resistance demonstrated by ordinary steel, COR-TEN, and S-TEN during long-term tests conducted in actual 60% H₂SO₄ or higher environments at 80°C with sufficient oxygen to produce sulfuric acid dew-point corrosion.

Table 1.1 Chemical Composition of Test Specimens

	Grade (equivalent)		Chemical composition (%)									
			С	Si	Mn	Р	S	Cu	Ni	Cr	Sb	Others
	SUS 410 (13%Cr)	(equivalent)	0.10	0.38	0.46	0.019	0.012	0.12	0.19	12.53	—	-
	SUS 430 (18%Cr)	(equivalent)	0.07	0.51	0.34	0.040	0.006	0.11	0.27	17.29	—	-
	SUS 304 (18Cr-8Ni)	(equivalent)	0.08	0.58	1.42	0.029	0.008	0.20	9.21	18.56	—	—
	SUS 316 (18Cr-12Ni-2Mo) (equivalent)		0.08	0.68	1.62	0.030	0.008	0.24	11.72	17.05	—	Mo:2.20
	Mild Steel		0.16	0.03	0.23	0.008	0.013	0.08	_	_	—	_
	S-TEN 1		0.03	0.28	0.91	0.011	0.009	0.27	_	_	0.10	-
	S-TEN 2		0.10	0.21	0.75	0.014	0.012	0.36	_	0.63	—	Ti:0.04
	COR-TEN /	A	0.09	0.46	0.38	0.110	0.017	0.32	0.30	0.52	_	-

Fig. 1.6 Sulfuric Acid Immersion Test Results under the Atmosphere-solution Equilibrium State of Sulfuric Acid and Hydrogen

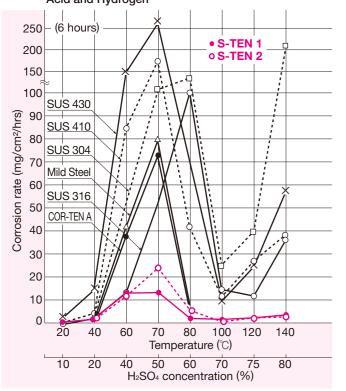
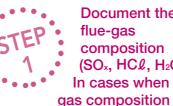



Fig. 1.7 Corrosion Mass of Steel in H₂SO₄ SUS 304 600 **PSUS 316** SUS 410 Mild Steel S-TEN 2 COR-TEN A (mg/cm²) ° : 400 ċ SUS 430 S-TEN 1 Corrosion mass 200 Rotating immersion tests Test specimen speed: 32.8 m/min. Testing conditions Temperature: 125°C Concentration: 75% 20 40 60 80 100 Test hours (hrs)

Examinations in Applying S-TEN

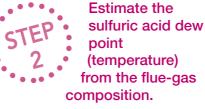

Document the composition $(SO_x, HC\ell, H_2O).$ In cases when the

Table 1.2

Average value 1)

Maximum value²⁾

varies widely depending on the combustion materials, adopt the maximum value for each composition.

SO₃ in gas		Moisture in gas (vol%)										
Volume ppm)	5	10	15	20	25	30	35	40	45	50	55	60
0.0	33	46	53	60	66	69	74	76	79	81	84	8
0.1	87	95	100	103	106	108	111	112	114	115	117	118
1	106	114	119	122	125	127	129	130	132	133	134	13
2	113	120	125	128	131	133	134	136	137	139	140	14
3	117	124	128	132	134	136	138	139	141	142	143	14
4	119	127	131	134	137	139	140	142	143	145	146	14
5	122	129	133	136	139	141	142	144	145	146	148	14
6	123	131	135	138	140	142	144	146	147	148	149	15
7	125	132	136	139	142	144	145	147	148	149	150	15
8	126	133	138	141	143	145	147	148	149	151	152	15
9	127	134	139	142	144	146	148	149	150	152	153	15
10	129	135	140	143	145	147	149	150	151	153	154	15
20	136	142	146	149	152	153	155	156	158	159	160	16
30	140	147	150	153	155	157	159	160	161	162	163	16
40	143	150	153	156	158	160	162	163	164	165	166	16
50	146	152	156	158	161	162	164	165	166	167	168	16
60	148	154	158	160	162	164	166	167	168	169	170	17
70	149	156	159	162	164	166	167	168	169	171	171	17
80	151	157	161	163	165	167	168	170	171	172	173	17
90	152	158	162	164	167	168	170	171	172	173	174	17
100	154	159	163	166	168	169	171	172	173	174	175	17
200	162	167	171	173	175	176	178	179	180	181	182	18
300	167	172	175	177	179	181	182	183	184	185	186	18
400	170	175	178	181	182	184	185	186	187	188	189	18
500	173	178	181	183	185	186	188	189	189	190	191	19

be paid to its application

For More Appropriate Use of S-TEN (Precaution in Use)

By combining the use of S-TEN with more appropriate equipment design, it is possible to minimize the cost of equipment repair and maintenance.

The following examines estimated corrosion environments and suitable grades of S-TEN for the casings of bag filters installed in general waste incineration plants.

By adhering to the following five steps, S-TEN can be more appropriately applied in waste incineration plants and environmentalprotection equipment.

H ₂ O (vol%)	SO₃ (ppm)	HCℓ (ppm)		
30	3	300		
50	10	1,000		

Notes 1) The case when the variation of combustion is small 2) The case when the variation of combustion is large, or the estimation of the variation of combustion is difficult

In this example, it is estimated that the variation in combustion is small, so the average value is adopted for the next step.

When the values for SO₃ (3 ppm) and H₂O (30%) shown in Table 1.2 are applied to the table of sulfuric acid dew points (Table 1.3), the target sulfuric acid dew point is seen to be approximately 136°C.

2) In the case of SO₃≥100 ppm, the corrosion rate increases even in S-TEN, and thus cares should

Find the hydrochloric acid dew point from the flue-gas composition.

The hydrochloric acid dew point is based on the moisture (H₂O) and hydrogen chloride (HC ℓ) contained in the flue gas and is found by employing the table of hydrochloric acid dew points (Table 1.4) and other data.

For the structural parts that constantly enter the light blue area of the table, a number of dilute hydrochloric-acid drains are formed that lead to increased corrosion. As a result, S-TEN with acid-resistant coating is recommended.

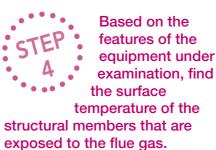
When the values for HC ℓ (300 ppm) and H₂O (30%) shown in Table 1.2 are applied to the table of hydrochloric acid dew points (Table 1.4), the target hydrochloric acid dew point is seen to be approximately 72°C.

Table 1.4 Table of Hydrochloric Acid Dew-point Temperature of HC&-H2O-type Gas

Hydrogen chloride in gas												
(Volume ppm)	5	10	15	20	25	30	35	40	45	50	55	60
1	33	46	53	60	66	69	74	76	79	81	84	87
10	33	46	53	60	66	69	74	76	79	81	84	87
20	34	46	53	60	66	69	74	76	79	81	84	87
30	35	47	54	60	66	69	74	76	79	81	84	87
40	36	47	55	60	66	69	74	76	79	81	84	87
50	36	48	55	60	66	69	74	76	79	81	84	87
60	37	48	56	61	66	69	74	76	79	81	84	87
70	37	49	56	61	66	69	74	76	79	81	84	87
80	37	49	56	61	66	69	74	76	79	81	84	87
100	38	49	57	62	66	70	74	76	79	81	84	87
200	39	51	58	63	68	71	74	77	79	81	84	87
300	40	52	59	64	68	72	75	78	80	82	84	87
400	41	52	60	65	69	73	76	78	81	83	85	87
500	42	53	60	65	70	73	76	79	81	83	85	87
600	42	53	61	66	70	73	76	79	81	84	86	87
700	42	54	61	66	70	74	77	79	82	84	86	88
800	43	54	61	66	71	74	77	80	82	84	86	88
900	43	54	61	67	71	74	77	80	82	84	86	88
1,000	43	55	62	67	71	75	78	80	83	85	87	88
2,000	45	56	63	68	73	76	79	82	84	86	88	90
3,000	46	57	64	69	73	77	80	83	85	87	89	91
4,000	46	58	65	70	74	78	81	83	86	88	90	91
5,000	47	58	65	70	75	78	81	84	86	88	90	92
10,000	48	60	67	72	76	80	83	85	88	90	92	93

Key points in design

: 1) Water dew point


2) When operations are constantly conducted within this temperature range, a quantity of dilute hydrochloric acid drains are forecasted to generate.

3) Provision of countermeasures against drains is required.

4) Sulfuric acid dew-point corrosion-resistant steel S-TEN with acid-resistant coating is recommended.

: 1) Hydrochloric acid dew point

- 2) High-concentration hydrochloric acid condensates.
- 3) Sulfuric acid and hydrochloric acid dew-point corrosion-resistant steel S-TEN 1 is recommended.

In the case of the current bag filter casing, external heat insulation is to be provided. Also, the temperature of the flue gas passing through the equipment is to be set at 150℃.

estimated as follows:

Table 1.5 Approximate Criteria for Wall Surface Temperature

External wall of flue, stack internal cylinder, duct, casing, etc. (In the case of flue-gas temperature at nearly 150°C)	In the case of provision of external heat insulation	Flue-gas temperature: nearly -20° C (However, in the case of structurally conducting radiation: -50^{-70} C)			
etc. (in the case of fide gas temperature at heary 100 0)	In the case of no provision of external heat insulation	Flue-gas temperature: -50~-70°C			
Element, etc. of air heater	Intermediate temperature between temperatures of flue gas and air				
Electrostatic precipitator electrode, etc. in the flue gas	Same as the temperature of flue gas				
Heat exchanger tube using steam and hot water as steam or hot water	Same as the temperature of steam or hot water				

member.

suitable material and corrosionspecifications from

 Hydrochloric acid dew point: 72℃ • Steel plate (wall surface) temperature (external heat insulation is to be provided): 80°C or more at minimum

When referring to Table 1.6, it is understood that S-TEN 1 is most suitable for this case. Further, because the estimated temperature at the radiation section (80°C) is close to the hydrochloric acid dew point (72°C), it is seen that unexpected and excessive corrosion can be prevented if due attention is paid to the design so that radiation is avoided.

Table 1.6 Selection of Suitable Grades of S-TEN Applied in Waste Incineration Plants and Flue-gas Treatment System of **Environmental Equipment**

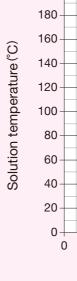
Flue-gas	ue-gas Range of wall surface Ex		Operating	g method	Reference
temperature	temperature	equipment	Continuous operation	Batch operation	(Corrosion mass)
	500℃ or more		S-TEN: No	t suitable	—
350℃ or more	350∼500℃	Duct in front of gas cooler	S-TEN 2	S-TEN 2	In operation: 0.3 mm/yr or less At start and stop: 2~3µm/start and stop
Less than 350°C Sulfuric acid dew point or more Less than Sulfuric acid dew point	350℃~Sulfuric acid dew point	Gas cooler	S-TEN 1 S-TEN 2	S-TEN 1 S-TEN 2	In operation: 0.1 mm/yr or less At start and stop: 2~3µm/start and stop
	Sulfuric acid dew point~Hydrochloric acid dew point	Gas cooler, bag filter casing, air preheater, flue stack	S-TEN 1 S-TEN 2	S-TEN 1 S-TEN 2	About 0.2 mm/yr
	Hydrochloric acid dew point~Water dew point	Flue Stack	S-TEN 1	S-TEN 1	About 0.2 mm/yr

When referring to Table 1.5, the temperature of the steel plate surfaces is

• The section with effective external heat insulation: about 130°C The section with less effective external heat insulation: 80~100°C

When summarizing the above, the following facts can be understood:

• Flue-gas temperature: about 150°C


Sulfuric acid dew point: 136°C

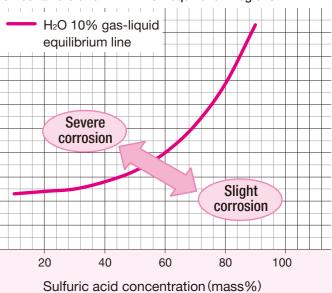
Application Examples for S-TEN

Table 1.7 Examples of Applications of S-TEN

	Pr	ractical ap	plication e	examples				
Equipment	Application	Grade		Approximate plate	Precautions in use			
	ΑρριισατίοΠ	S-TEN 1	S-TEN 2	thickness (mm)				
Dry-type electrostatic precipitator	Casing, duct, collecting electrode	0	0	1.2~8	The temperature of casings and ducts is $20 \sim 70^{\circ}$ C lower than that of flue gas, depending on the heat insulation conditions. It is estimated that the temperature of the collecting electrode and the gas is the same. In cases when dust accumulates, the absorbed H ₂ SO ₄ is difficult to evaporate and leads to cases of more than expected corrosion. As a result, it is necessary to prevent dust accumulation.			
Wet-type electrostatic precipitator	Casing, duct, collecting electrode	0	0	3.2~12	In cases when the flow of scrubber water is constant against a wall surface, the corrosion mass increases (by 0.1 mm/yr on one side). Further, in cases when the scrubber water in such a situation has a low pH value, the corrosion mass will increase abruptly, thereby making it necessary to avoid the use of S-TEN.			
Gas cooler	Casing, duct	0	0	4.5~9	The temperature of casings and ducts is 20~70°C lower than that of flue gas, depending on the heat insulation conditions. The mist droplet becomes large due to the deterioration of nozzle holes and does not evaporate to reach the casing, under which there are cases when unexpected corrosion occurs, and thus it is necessary to control the deterioration of nozzle holes.			
	Ash discharge blade		0	12~20	S-TEN 2 is most suitable for use as the material for the blades that discharge the ash accumulated in the bottom section of gas cooler. The stress-induced corrosion cracking attributable to the chlorides contained in the ash can be prevented from occurring.			
Air	Ljungström- type basket case, element	0	0	0.6~6	Because of repeated fluctuations in wall surface temperature, dew-point corrosion from high to low temperatures occurs repeatedly, and the application advantage of S-TEN is exhibit- ed to the high degree.			
preheater	Tube	0		0.6~3.5	The tubes are constantly in the dew-point state, and accord- ingly, S-TEN is highly effective. S-TEN 1 tube is most suitable for such application.			
Flue	Duct, expansion	0	0	4.5~9	S-TEN of the no coating specifications or the acid resistant- coating specifications is suitable. When the temperature of the flue gas itself drops below the dew point, drainage accumulates in the flue bottom, frequently causing unexpectedly severe			
Stack	Internal cylinder	0		6~12	corrosion, and thus it is recommended to provide appropriate measures to carry out sufficient drainage and to prevent lower- ing of steel plate temperatures by means of external heat insulation.			
Flue-gas desulfurizer	Flue-gas cylinder, after-burner duct	0	0	3.2~6	In the ducts leading to and from gas coolers and absorption towers, low pH solutions occasionally adhere to wall surfaces due to sulfuric acid mist, and therefore it is necessary to fully investigate drainage conditions.			
Hydrochloric acid pickling tank	Tank	0		9~20	The use for hydrochloric acid pickling tank in coating is suitable. S-TEN tanks have a high scratch resistance during use, and these tanks after use can be treated as the general recyclable steel material.			

Precaution in the Use of S-TEN

Table 1.8 Results of corrosion tests in the weakly acidic area (p


Grade	Co	orrosion rate (mg/cm²/h	Tooting conditions							
	pH2	pH3	pH4	 Testing conditions 						
S-TEN 1	1.6	2.0	0.36							
S-TEN 2	2.8	2.2	0.38	—						
Mild Steel	8.2	2.5	0.36	Test temperature: 30°C						
SUS 304	< 0.001	< 0.001	< 0.001	Relative speed of specimen and solution: 1.8 m/sec						
SUS 316	< 0.001	< 0.001	< 0.001	Test time: 72 hrs						
SUS 410	0.51	< 0.001	< 0.001							
SUS 430	0.001	< 0.001	< 0.001							

1) S-TEN are a group of low-alloy corrosion-resistant steels. It should be noted that despite dew point corrosion being inhibited in them, there still occurs rust formation and progress of corrosion also.

2) S-TEN, as shown in Fig. 1.6, are effective in inhibiting sulfuric acid dew point corrosion, as compared with other steel grades, but, as can be seen from their performance at 60°C and 70°C in this figure, there are temperature regions in which steels' absolute corrosion weight losses become greater than those in the other temperature regions.

3) Careful note must be taken of the fact that S-TEN also tend to be more greatly susceptible to high-temperature corrosion and low-concentration sulfuric acid corrosion, than to corrosion occurring in the gas-liquid equilibrium state, as shown in Fig. 1.8.

4) Results of the corrosion test made at very thin concentrations of pH2 to 4 of sulfuric acid are shown in Table 1.8. As against corrosion by such weakly acidic or neutral liquid, stainless steels are most resistant, with very little corrosion weight loss. At concentrations of pH3 and over, there is no significant difference between ordinary steels and S-TEN.

Fig. 1.8 Corrosion behaviors of S-TEN in non-equilibrium regions

2. Specifications and Available Sizes of S-TEN

Specifications of S-TEN

1 Grade Designation

Table 2.1

Grade	Product	Thickness [diameter] (mm)				
	Cold-rolled sheet	0.6≦ t	:≦2.3			
	Hot-rolled sheet and plate ¹⁾	1.6≦t≦20.2				
S-TEN 1	ERW pipe and tube ²⁾	Outside dia.: 19.0~114.3	Wall thickness: 2.0~8.9			
	Seamless pipe and tube ²⁾	Outside dia.: 31.8~426	Wall thickness: 3.0~50			
	Large-diameter pipe	Outside dia.: 400~2,500	Wall thickness: 6.0~20			
	Cold-rolled sheet	0.6≦ t	:≦2.3			
S-TEN 2	Hot-rolled sheet and plate ¹⁾	1.6≦t≦25.4				
	Bar and bar-in-coil	t	:≦38			

Notes 1) Hot-rolled sheets and plates (all plates; specification required for sheet) conform to JIS G 3106 (S-TEN 1: SM400A; S-TEN 2: SM490A). JIS is inscribed on the steel product inspection sheet when specified. 2) ERW pipe and tubes are registered in the technical standards for thermal power generation facilities (METI

KA-STB380J2, KA-STPT380J2), ASME Code Case 2494 and ASTM A423.

2 Chemical Composition

Table 2.2

Grade	Chemical composition (%)								
Grade	С	Si	Mn	Р	S	Cu	Cr	Ti	Sb
S-TEN 1	≦0.14	≦0.55	≦1.60 ¹⁾	≦0.025	≦0.025	0.25~0.50	—	—	≦0.15
S-TEN 2	≦0.14	0.15~0.55	≦1.60	≦0.035	≦0.035	0.25~0.50	0.50~1.00	≦0.15	_

Notes 1) 2.5×[C]≦Mn

2) Alloying elements other than those shown in the table may added as occasion demands

3 Mechanical Properties

Table 2.3 Cold-rolled Sheets and Bars

Grade	Thickness (mm)	Yield point (N/mm²)	Tensile strength (N/mm²)	Elongation (%)	Test specimen (JIS)
S-TEN 1	—	235≦	400≦	23≦	No. 5
S-TEN 2	_	325≦	440≦	22≦	No. 5 ¹⁾

Note 1) Bars: No. 2 for the diameters 25 mm or less; No.14A for the diameters more than 25 mm

Table 2.4 Hot-rolled Sheets and Plates, and Spiral Welded Pipe

Grade	Thickness	Yield point	Tensile strength	Elongation	Test specimen
Grade	(mm)	(N/mm²)	(N/mm²)	(%)	(JIS)
	≦5			23≦	No. 5
	< 16	245≦		23≦	No. 5
S-TEN 1	S-TEN 1 ≦16		400~510	18≦	No. 1A ¹⁾
	≦20.2	235≦		23≦	No. 5
	≧20.2	200≧		22≦	No. 1A ¹⁾
	≦5			22≦	No. 5
	≦16	325≦		22≦	No. 5
S-TEN 2	≧ 10		490~610	17≦	No. 1A ¹⁾
	< 05 /	315≦		22≦	No. 5
	≦25.4	313≧		21≦	No. 1A ¹⁾

Note 1) Applied in the case of production as JIS G 3106 (applied in all production of plates)

Table 2.5 ERW Pipes and Tubes, Seamless Pipes and Tubes

Grade	Thickness (mm)	Yield point (N/mm²)	Tensile strength (N/mm²)	Elongation (%)	Test specimen (JIS)
S-TEN 1		230≦	380≦	35≦ ¹⁾	No. 11 or 12
3-TEN T	_	230 ≧	300 ≧	30≦	No. 4 (pipe axis direction)

Note 1) Minimum elongation values for No.12 test piece (pipe axis direction) taken from pipes under 8mm in wall thickness

Elongation value by thickness division									
1 <t≦2mm 2<t≦3mm="" 3<t≦4mm="" 4<t≦5mm="" 5<t≦6mm="" 6<t≦7mm="" 7<t<8mm<="" th=""></t≦2mm>									
26	28	29	30	32	34	35			
	(Unit : %)								

Available Sizes for S-TEN

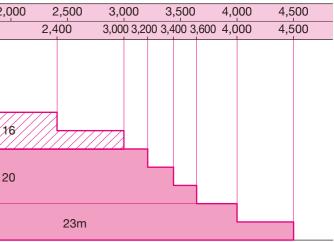
(1) Hot-rolled Sheets and Plates (S-TEN 1, S-TEN 2)

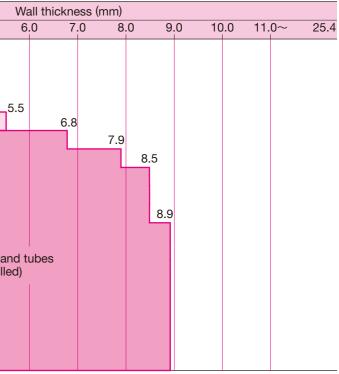
Plate Width (mm)	500	1,0	00	1,50	0	2
Thickness (mm)	60	00	1,2501	,350 1	,550	
1.6≦ t ≦2.0						
2.0< t ≦2.5		0	3.6			
2.5< t ≦3.0		J.	.0			
3.0< t ≦4.5		(6.0			
4.5< t ≦5.0		9.7	10			
5.0< t ≦6.0		9.7	16			
6< t ≦7						
7 <t≦8< th=""><td></td><td></td><td></td><td></td><td></td><td>4</td></t≦8<>						4
8< t ≦9						
9< t ≦12						
12< t ≦25.4						

Notes 1) Figures in the table show the maximum length.

2) Minimum length: 3 m for the thicknesses 6 mm or more; 1.5 m for the thicknesses less than 6 mm 3) For this size range and the plate thicknesses up to 50 mm, please consult us in advance.

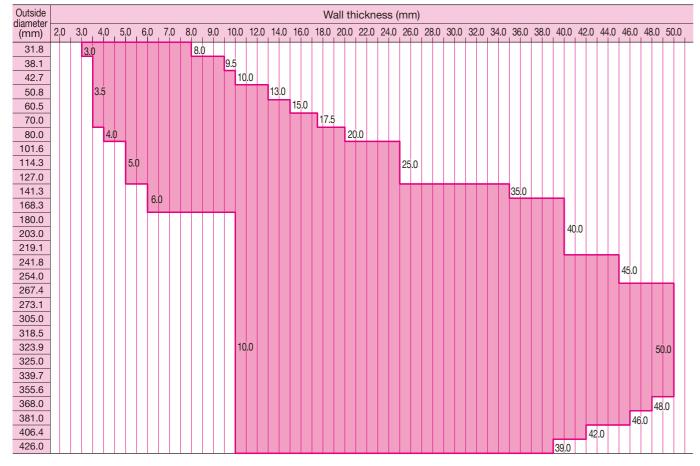
②Cold-rolled Sheets (S-TEN 1, S-TEN 2)


Width (mm)	400	600	800	1,000	1,200	1,400	1,600	1,800	2,000
Plate Thickness (mm)	290	530				1,470	1,540	1,845	
0.6, 0.7	16								
0.8, 0.9, 1.0, 1.2, 1.6			Leng	th:0.79~	4.92m	0.8	3		
2.0, 2.3									


Note) ///// For this size range, please consult us in advance.

③ ERW Pipes and Tubes (S-TEN 1)

	•	•		•			
Outside diameter(mm)	Nominal diameter A	2	.0	3.0 4	.0	5	.0
19.0					-	1.5	
21.7	15						
25.4				pipes and		s	
27.2	20		((cold-finish	ied)		
31.8							
34.0	25						
38.1							
42.7	32						
45.0							
48.6	40						
50.8							
54.0					ERW	pir	nes a
57.0							s-rol
60.5	50						
76.2	65						
88.9	80						
101.6	90						
114.3	100						


Note) The following sizes are subject to negotiation. Available products are SAW pipe (BR or SP). Outside diameter (nominal diameter A): 138.9–125, 165.2–150, 216.3–200, 267.4–250, 318.5–300, 355.6–350, 406.4–400; maximum outside diameter: 2,500 mm

Available Sizes for S-TEN

4Seamless Pipes and Tubes (S-TEN 1)

3.Characteristic Properties of S-TEN (Examples)

Chemical Composition and Mechanical Properties

(1) Chemical Composition

Table 3.1 Chemical Composition (Example)

Grade Product		Chemical composition (%)								
Grade	Product	С	Si	Mn	Р	S	Cu	Cr	Others	
	Cold-rolled sheet	0.04	0.30	0.91	0.015	0.010	0.30		Sb: 0.10	
	Hot-rolled medium plate	0.04	0.30	0.91	0.015	0.010	0.30		Sb: 0.10	
S-TEN 1	Plate	0.04	0.28	1.00	0.012	0.012	0.28		Sb: 0.09	
	ERW pipe and tube	0.04	0.20	1.00	0.011	0.010	0.27		Sb: 0.10	
	Seamless pipe and tube	0.03	0.25	1.12	0.006	0.014	0.29		Sb: 0.12	
	Cold-rolled sheet	0.09	0.24	0.76	0.017	0.013	0.32	0.68	Ti : 0.03	
S-TEN 2	Hot-rolled medium plate	0.12	0.26	0.76	0.016	0.007	0.28	0.70	Ti : 0.03	
	Plate	0.14	0.22	0.75	0.018	0.012	0.34	0.65	Ti : 0.03	

2 Mechanical Properties

Table 3.2 Hot-rolled Sheets and Plates

	Plate		Tensile test	
Grade	thickness	Yield point	Tensile strength	Elongation
	(mm)	(N/mm²)	(N/mm ²)	(%)
	2.3	345	470	36
S-TEN 1	6.0	383	458	38
S-TEN I	12.0	382	452	42
	16.0	368	441	47
	2.3	440	540	33
S-TEN 2	6.0	440	530	35
5-1EN 2	9.0	420	520	39
	13.0	410	510	41

Test specimen: JIS No. 5

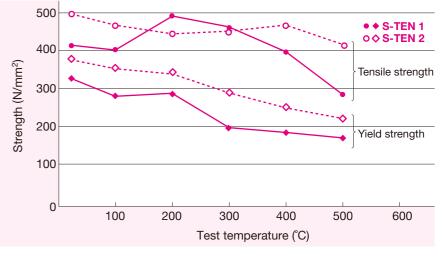

Table 3.3 Cold-rolled Sheets

	Plate		Tensile test	
Grade	thickness	Yield point	Tensile strength	Elongation
	(mm)	(N/mm²)	(N/mm ²)	(%)
S-TEN 1	1.2	295	410	36
S-TEN I	1.6	305	440	36
S-TEN 2	0.8	380	490	32
	1.2	380	490	32

High-temperature Characteristics

High-temperature Short-time Strength

Results of high-temperature tensile tests are shown in Fig. 3.1.

Table 3.4 ERW Pipes and Tubes

	Outside	Tensile test				
Grade	diameter × Wall thickness	Yield point	Tensile strength	Elongation		
	(mm)	(N/mm²)	(N/mm²)	(%)		
S-TEN 1	48.6 × 3.5	298	403	61		
	89.1 × 5.0	293	418	41		

Table 3.5 Seamless Pipes and Tubes

	Outside	Г	ensile test	
Grade	diameter × Wall thickness	Yield point	Tensile strength	Elongation
	(mm)	(N/mm²)	(N/mm²)	(%)
S-TEN 1	50.8×8.0	319	440	58
5-TEN T	219.1×15.1	300	414	56

Fig. 3.1 High-temperature Tensile Test Results

Physical Properties

Physical properties are shown in Table 3.6. Specific heat, thermal conductivity and thermal expansion coefficient of S-TEN are similar to those of Mild Steel, SM400A, SM490C. etc.

Table 3.6 Physical Properties

Grade	Temperture (°C)	Young's modulus (GPa)	Specific heat (kJ/kg · K)	Thermal conductivity (W/m · K)	Thermal expansion coefficient 20°C~T (×10 ⁻⁶ /°C)	
	25	207.4	0.450	44.2	_	
	100	203.7	—	—	12.8	
S-TEN 1	200	198.3	0.491	45.5	13.2	
3-TEN T	300	192.0	—	—	13.6	
	400	184.0	0.532	36.8	14.0	
	500	_	—	—	_	
	25	211.0	0.456	45.1	_	
	100	207.0	0.486	41.2	12.8	
S-TEN 2	200	202.0	0.520	40.8	13.1	
3-1EN 2	300	196.0	0.553	40.2	13.5	
	400	188.0	0.590	37.7	13.8	
	500	179.0	0.644	34.1	14.2	

Measurement method - Young's modulus: Resonance method; Specific heat and thermal conductivity: Laser flash method; Thermal expansion coefficient: Measurement of thermal expansion

Corrosion Resistance ①Weather Resistance

S-TEN surpasses ordinary steel in weather resistance: S-TEN 1: About 2 times (similar to Cu-containing steel) S-TEN 2: 4~6 times (similar to COR-TEN 490)

Table 3.7 Chemical Composition of Test Specimens for Hydrochloric Acid Resistant Tests (Figs. 3.2~3.5)

Grade	Chemical composition (%)								
Grade	С	Si	Mn	Р	S	Cu	Cr	Sb	Ti
S-TEN 1	0.03	0.26	0.90	0.011	0.010	0.27		0.09	—
S-TEN 2	0.09	0.24	0.69	0.009	0.014	0.29	0.54		0.03
Mild Steel	0.15	0.14	0.70	0.014	0.005	0.01			

(2) Hydrochloric Acid Resistance

Corrosion caused by hydrochloric acid gas contained in the exhaust gas of garbage disposal incinerators has recently become a social problem. S-TEN 1 has greater resistance to hydrochloric acid corrosion than ordinary steel, and thus permits effective application in this field (for example, hydrochloric acid tanks for galvanizing). Figs. 3.2~3.5 show the results of tests pertaining to hydrochloric acid corrosion.

1) S-TEN 1 exhibits corrosion resistance $5 \sim 10$ times that of ordinary steel.

- 2) In dilute hydrochloric acid (about 3% or less), the corrosion rate of S-TEN is higher than that of SUS, and thus the use of S-TEN in such environments is not recommended.
- 3) In hydrochloric acid with a concentration of 10% or more, S-TEN 1 exhibits high corrosion resistance.
- 4) As the temperature and concentration of hydrochloric acid increases, S-TEN 1 exhibits higher corrosion resistance.
- 5) Please pay attention to the fact that when alien substances are mixed in the acid, characteristic properties may vary in some cases.

Fig. 3.2 Relation between Hydrochloric Acid Concentration and Corrosion Rate

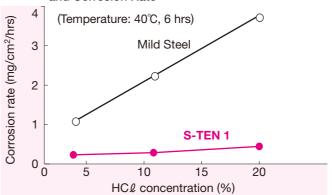
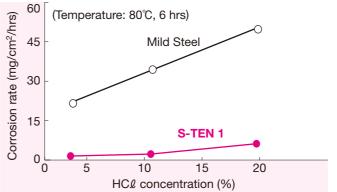
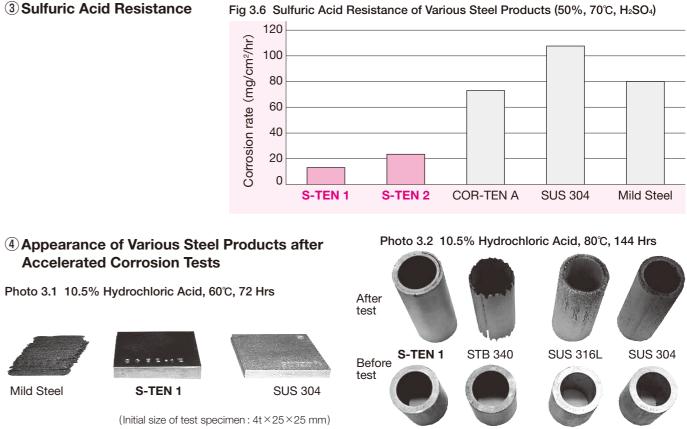




Fig. 3.4 Relation between Hydrochloric Acid Concentration and Corrosion Rate

(4) Appearance of Various Steel Products after **Accelerated Corrosion Tests**

Photo 3.1 10.5% Hydrochloric Acid, 60°C, 72 Hrs

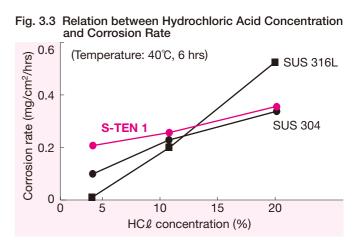
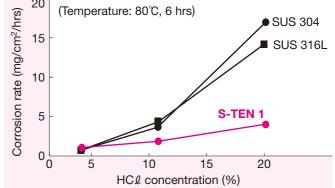



Fig. 3.5 Relation between Hydrochloric Acid Concentration and Corrosion Rate

4. Welding of S-TEN

The carbon and manganese contents of S-TEN are kept low to secure high corrosion resistance. Therefore, S-TEN offers excellent weldability and can be welded under the same conditions as those for ordinary steel of the same strength level.

However, because sulfuric acid and hydrochloric acid dew-point corrosion resistance similar to that of the base metal is required for welds, it is necessary to use welding materials for exclusive use for S-TEN.

Welding Materials

As the welding material for exclusive use for S-TEN, NIPPON STEEL WELDING & ENGINEERING CO., LTD.* supplies the following products.

> *Inquiry: NIPPON STEEL WELDING & ENGINEERING CO., LTD. Shingu Bldg.,2-4-2 Toyo, Koto-ku,Tokyo 135-0016 Tel: +81-3-6388-9000 Fax: +81-3-6388-9160 www.weld.nipponsteel.com

	Materials
Table 4.1	

Kind of shielding material Grade Gas shielded metal arc welding Shielded metal arc welding Submerged arc welding (SAW) (SMAW) MAG welding (FCAW) TIG welding (GTAW) NSSW YT-1ST NSSW SF-1ST NSSW Y-1ST × NSSW ST-16M¹⁾ ≿(JIS Z 3313 T49J0T1-1CA-UH5)│☆(JIS Z 3313 T49J0TG-1GA-U) S-TEN ⁻ NSSW NB-1ST ☆(JIS Z 3211 E4916-G) (AWS S-36 E81T1-C1A0-G) ☆(JIS Z 3183 S502-H) NSSW ST-16Cr¹⁾ ☆(JIS Z 3211 E5516-G) NSSW FC-23ST S-TEN 2 ☆(JIS Z 3313 T49J0T1-1CA-U) NSSW ST-03Cr²⁾ ☆(JIS Z 3211-E4903-G)

Notes 1) Low-hydrogen type 2) Lime titania type

Mark"☆" means that the product meets the classification requirements but that the JIS Mark system is not applicable to the classification.

2 Chemical Composition and Mechanical Properties of Various Welding Materials (Example)

Table 4.2													
Welding method	Brand	С	Si	Mn	Р	S	Cu	Cr	Sb	YS (N/mm²)	TS (N/mm²)	EL (%)	vEo (J)
	NSSW ST-16M	0.04	0.62	0.50	0.009	0.004	0.42	_	0.08	471	568	29	165
SMAW	NSSW ST-16Cr	0.05	0.50	0.48	0.012	0.006	0.20	0.73	_	481	550	27	203
	NSSW ST-03Cr	0.06	0.15	0.56	0.014	0.011	0.23	0.79	_	463	532	26	112
FCAW	NSSW SF-1ST	0.05	0.60	1.41	0.012	0.013	0.39	_	0.10	581	640	25	71
FUAW	NSSW FC-23ST	0.04	0.38	0.81	0.016	0.013	0.35	0.74	_	512	585	25	52
GTAW	NSSW YT-1ST	0.01	0.29	1.33	0.004	0.009	0.32	_	0.10	398	478	39	285
SAW	NSSW Y-1ST × NSSW NB-1ST	0.03	0.34	1.13	0.007	0.011	0.19	_	0.09	452	530	31	141

3 Welding Materials for Dissimilar Welding with Stainless Steels (Example) Table 4.3

	Velding nethod	Brand	С	Si	Mn	Р	S	Cr	Ni	YS (N/mm²)	TS (N/mm²)	EL (%)	vEo (J)
S	SMAW	NSSW 309·R	0.06	0.33	1.51	0.020	0.006	24.2	13.2	460	582	37	64
S	SAW	NSSW Y-309× NSSW BF-300M	0.06	0.45	1.64	0.020	0.010	24.0	13.5	375	558	38	89
F	CAW	NSSW SF-309L	0.03	0.65	1.54	0.023	0.009	24.4	12.7	429	566	37	36
C	GMAW	NSSW YM-309	0.05	0.35	1.74	0.021	0.007	23.6	13.3	447	618	33	92
C	GTAW	NSSW YT-309	0.05	0.40	1.65	0.020	0.006	23.8	12.4	517	620	34	166

Please pay attention to galvanic corrosion.

Welding Characteristics

Maximum hardness tests and y-groove weld cracking tests prescribed by JIS were performed to confirm the weldability of S-TEN. S-TEN 1 and 2 having the characteristics shown in Tables 4.4 and 4.5 were used as the test specimens.

Table 4.4 Chemical Composition of Test Specimens

Grade	Thickness				Chemic	al composi [.]	tion (%)			
Grade	(mm)	С	Si	Mn	Р	S	Cu	Cr	Ti	Sb
S-TEN 1	16	0.04	0.28	1.00	0.012	0.012	0.28	_	_	0.09
S-TEN 2	16	0.09	0.21	0.74	0.023	0.010	0.35	0.70	0.02	—

Table 4.5 Mechanical Properties of Test Specimens

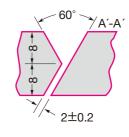
Grade	Thickness	Tensile test							
Grade	(mm)	Yield point (N/mm ²)	Tensile strength (N/mm²)	Elongation (%)					
S-TEN 1	16	368	441	47					
S-TEN 2	16	380	500	43					

Tensile test specimen: JIS No. 5

1 Maximum Hardness Test

ed Zone).

Table 4.6 Maximum Hardness Test Results

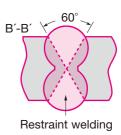

Grade	Thickness (mm)	Initial temperature of specimen	Maximum hardness (Hv)
S-TEN 1	16	Room temperature	189
S-TEN 2	16	Room temperature	242

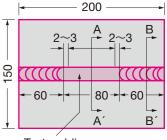
Welding conditions: Welding Electrodes 4 mm in dia.; current 170 A; voltage 24 V; speed 150 mm/min

2 y-groove Cracking Test

To determine the crack sensitivity of welds, the test was conducted using the test specimens, shown in Fig. 4.1, in accordance with JIS Z 3158 (Method of y-Groove Cracking Test). The test results are shown in Table 4.7.

Fig. 4.1 Configuration of y-groove Weld Cracking Test Specimen




Table 4.7 y-groove Weld Cracking Test Results

Grade	Thickness Initial temperature		Sur	Surface crack rate (%)				Section crack rate (%)				Root crack rate (%)			
Giade	(mm)	of specimen (°C)	1	2	3	Average	1	2	3	Average	1	2	3	Average	
S-TEN 1	16	0	0	0	0	0	0	0	0	0	0	0	0	0	
S-TEN I	10	25	0	0	0	0	0	0	0	0	0	0	0	0	
S-TEN 2	16	0	0	0	0	0	0	0	0	0	0	0	0	0	
STEN Z	10	25	0	0	0	0	0	0	0	0	0	0	0	0	

Welding conditions: Welding Electrodes 4 mm in dia.; current 170 A; voltage 24 V; speed 150 mm/min

Table 4.6 shows the results of HAZ maximum hardness tests in accordance with JIS Z 3101 (Testing Method of Maximum Hardness in Weld Heat-Affect-

Test welding

Sulfuric Acid and Hydrochloric Acid **Resistance of Welded** Joints

Sulfuric acid and hydrochloric acid immersion test of welded joints was conducted to determine the sulfuric acid resistance of welded joints, the results of which are shown below.

The test results indicate that the welded joints made using welding rods for exclusive use for S-TEN exhibit corrosion resistance similar to that of the base metal. But in the case of using welding rods for use for mild steel, the results clearly indicate that the welded joints only are severely corroded.

1 Example of S-TEN 1

Immersion tests were conducted using the test specimen, consisting of both base metal and weld metal, shown in Fig. 4.2 and under the conditions shown in Photo 4.1. Cross sections of the corroded specimen are shown in Photo 4.1.

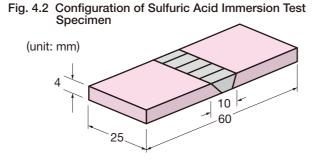
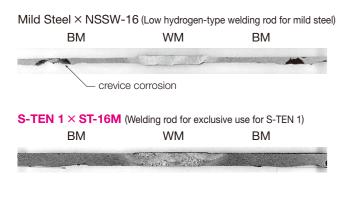


Photo 4.1 Corrosion Conditions of S-TEN 1 Weld Joint

Hydrochloric acid: 10.5% hydrochloric acid \times 80°C × Immersion for 24 hrs

NSSW-16 (Low hydrogen-type welding rod for mild steel) × Base metal (Mild Steel)

NSSW ST-16M (Welding rod for exclusive use for S-TEN 1) \times Base metal (S-TEN 1)



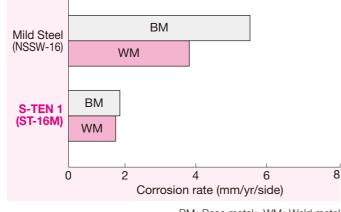
Immersion condition: 17.5% hydrochloric acid, 32°C, fully immersed Immersion period: 4 months

Photo 4.2 Cross Sections of Joint Specimens Immersed in Hydrochloric Acid Pickling Tank for 4 Months

Base metal × Weld metal

BM: Base metal: WM: Weld metal

Sulfuric acid: 50% sulfuric acid×70°C×Immersion for 24 hrs

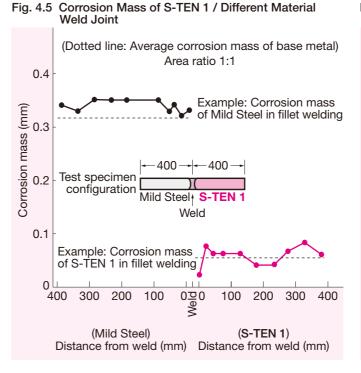

NSSW-16 (Low hydrogen-type welding rod for mild steel) × Base metal (Mild Steel)

NSSW ST-16M (Welding rod for exclusive use for S-TEN 1) × Base metal (S-TEN 1)

Fig. 4.3 Test Results for Weld Joint Test Specimens Immersed in Hydrochloric Acid Pickling Tank

BM: Base metal: WM: Weld metal

Galvanic Corrosion in Corrosive Atmosphere


Galvanic corrosion is caused by the difference in electrical potential between different metals.

S-TEN 1 and Mild Steel show the trend of natural electrode potential in a 40% sulfuric acid solution at 60°C, as shown in Fig. 4.4. In other words, S-TEN 1 shows 20 mV higher potential than Mild Steel. Therefore, joining of Mild Steel with S-TEN 1 would make Mild Steel a cathode and the corrosion of S-TEN 1 (anodic dissolution) would be accelerated. It has been confirmed, however, that such slight difference in potential is practically insignificant, as introduced below.

Property Qualification Test Results

S-TEN 1

The following property qualification tests were conducted in The tests were conducted by immersing the specimens the laboratory. In preparing test specimens, it was thought in 40%-concentrated sulfuric acid at 55°C for 5 hours. As a result, as shown in Figs. 4.5 and 4.6, it was found that the that corrosion of Mild Steel would be accelerated when the area of Mild Steel was less than that of S-TEN 1. Taking this corrosion of specimens was nearly the same as that of S-TEN itself and that, in such sulfuric-acid corrosive environment, into account, the test specimens were prepared so that the ratio of the area of Mild Steel to S-TEN 1 became 1:1 and contact of different metals with an electrical potential difference 1:10 for butt-welded joints. of approximately 20 mV can be disregarded.

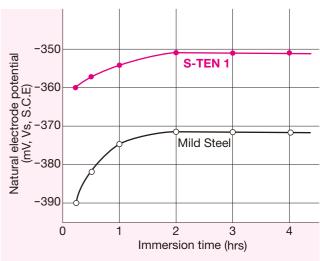
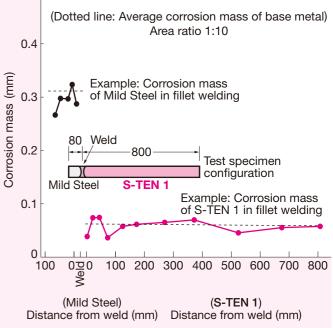
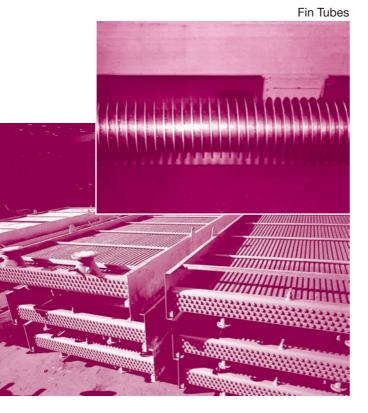



Fig. 4.4 Natural Electrode Potentials of S-TEN 1 and Mild Steel in 40% Sulfuric Acid (60°C)

Fig. 4.6 Corrosion Mass of S-TEN 1 / Different Material Weld Joint

5. Application Examples



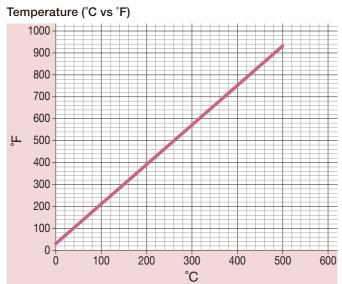
Kashima Kyodo Electric Power

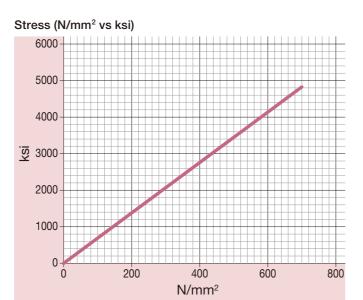
Flue-gas desulfurization equipment in a coal-fired power station

Tubes for Air Fin Cooler 🚄

6. Reference

Unit Conversion Table

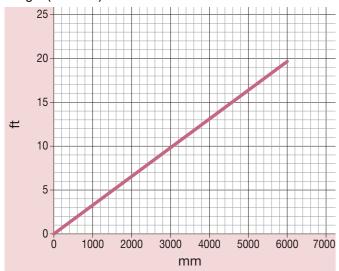

°C


;	°F	N/mm ²	ksi	mn
0	68	100	689	0
0	104	200	1379	0
0	140	250	1724	0
0	176	300	2068	0
0	212	350	2413	0
0	248	400	2758	1
0	284	450	3103	2
0	320	460	3172	3
0	356	470	3241	4
0	392	480	3309	5
0	572	490	3378	10
0	752	500	3447	20
0	932	510	3516	30
F=	9/5×C+32	520	3585	40
		530	3654	50
		540	3723	100
		550	3792	200
		560	3861	300
		570	3930	400
		580	3999	500
		590	4068	1000
		600	4137	2000
		610	4206	3000
		620	4275	4000
		630	4344	5000
		640	4413	6000
		1 ksi = 0.14	5038N/mm²	

mm	mil	inch	ft
0.1	3.94	0.003937008	
0.2	7.87	0.007874016	
0.3	11.81	0.011811024	
0.4	15.75	0.015748031	
0.5	19.69	0.019685039	
1	39.37	0.039370	
2	78.74	0.078740	
3	118.11	0.118110	
4	157.48	0.157480	
5	196.85	0.196850	
10	393.70	0.393701	
20	787.40	0.787402	
30		1.181102	
40		1.574803	0.13123
50		1.968504	0.16404
100		3.937008	0.32808
200		7.874016	0.65617
300		11.81102	0.98425
400		15.74803	1.31234
500		19.68504	1.64041995
1000		39.37008	3.2808399
2000		78.74016	6.56167979
3000			9.84251969
4000			13.1234
5000			16.4041995
6000			19.6850
	1 mil = 0.0254 mm	1inch=25.4mm	1ft=304.8mm

6. Reference

Unit Conversion Charts


Length (mm vs mil)

Length (mm vs inch)

Length (mm vs ft)

MEMO

