

www.nipponsteel.com

Notice: While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by NIPPON STEEL CORPORATION with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the NIPPON STEEL CORPORATION office for the latest information. Please refrain from unauthorized reproduction or copying of the contents of this publication. The names of our products and services shown in this publication are trademarks or registered trademarks of NIPPON STEEL CORPORATION, affiliated companies, or third parties granting rights to NIPPON STEEL CORPORATION or affiliated companies. Other product or service names shown may be trademarks or registered trademarks of their respective owners.

#### **NIPPON STEEL CORPORATION**

2-6-1 Marunouchi, Chiyoda-ku,Tokyo 100-8071 Japan Tel: +81-3-6867-4111 CORSPACE™ A104en\_05\_202409f © 2019, 2024 NIPPON STEEL CORPORATION



# **CORSPACE**<sup>TM</sup>

Corrosion Resistance Steel for Repainting Cycle Extension

NETIS registration : KK-150056-VR



NIPPON STEEL Green Transformation initiative COrrosion Resistance Steel for rePAinting Cycle Extension

# **CORSPACE**<sup>TM</sup>

**Necessity and expected effect** 

CORSPACE enables you to extend the coating cycle when compared with conventional steel, thereby reducing the life cycle cost.



Bridges are usually assumed to be in service for 100 years, and appropriate maintenance is required during the period. The major control item of the maintenance items is the progress of corrosion from the deteriorated part of the coating film, and periodical recoating is necessary. Recoating accounts for a large portion of the maintenance cost, and the reduction of the number of recoatings is desired from the viewpoint of reducing the environmental load.





Durability of coating pinhole part, coating defect part and round edge part

Insufficient cleaning during maintenance and repair (narrow part, etc.)

**Repainting coat** 

**Reinforcing surface preparation** 

Corrosion resistance steel for repainting cycle extension developed

# Effect expected using CORSPACE

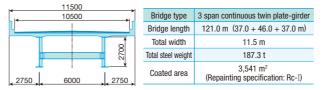
#### Issues

- Corrosion from coating pinhole part and deteriorated part
- Corrosion from sharp edge part of element

In a severe salt damage environment,
the maintenance cost and environmental load
can be reduced by extending the recoating cycle.

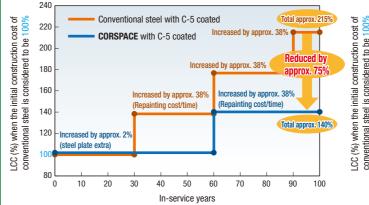
# **CORSPACE**

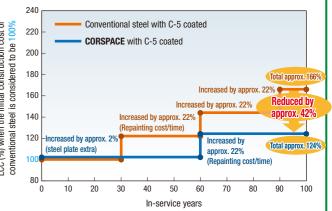
**Advantages** 


# Advantages in maintenance (Example of steel bridge LCC calculation)

#### CORSPACE can extend the coating cycle to about double that compared with conventional steel

**under the same coating/installation environment.** Therefore, while conventional steel needs coat repainting three times every 100 years, CORSPACE can reduce it to once and approximately halve the cost for repainting maintenance cost.


Furthermore, reducing the number of times of coat repainting will contribute to VOC discharge control, and thus the environmental load can be reduced.


#### A 3 span continuous twin plate-girder



#### **B** 3 span continuous narrow box-girder





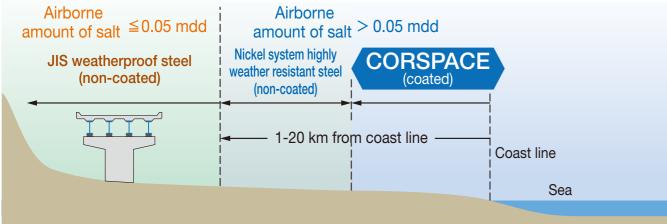


When the in-service years of the conventional steel with C5 coated in a salt damage environment is set to 30 years. When the repair/repainting is conducted for Rc-I coating on outer side of the girder.

The life-cycle cost can be decreased by reducing the coat repainting to once every 100 years.

# Advantages in order reception, design and manufacturing

- We can serve you with the NETIS registration technology (KK-150056-VR certified in January 2021), technical proposals and construction performance rating.
- The standard extras are described as "Corrosion Resistance Steel for Repainting Cycle Extension" in the Kensetsu Bukka (Construction Research Institute) and Sekisan Shiryou(Economic Research Association).
- CORSPACE is listed as a "tin added steel" that can be used in Hanshin Expressway Company Limited "Part 2 Structural Design Standards (Bridge Edition)" (January 2021) and Metropolitan Expressway Company Limited "Bridge Structure Design/Construction Procedure" (June 2015).
- The Ministry of Land, Infrastructure, Transport and Tourism New Technology Information System (NETIS)


  KK-150056-VR
- CORSPACE conforms to all the JIS standards of steel plates used for bridges, and the plate manufacturable range is equivalent to that of conventional steel.
- Various types of workability such as cutting, bending, and welding are equivalent to that for conventional steel.
- We are lining up exclusive weld materials and bolts.

Point-adding factors in evaluation during proposal and after completion.

**Features** 

Adding a fine amount of tin significantly reduces the corrosion mass. It produces an effect in coastal areas where salt damage is severe.

# **Image of applying CORSPACE to a bridge**



- CORSPACE has a function to inhibit corrosion of steel at the parts where the coating film is deteriorated or the film is thin.
- It delivers a much wider effect in a place where salt damage is severe, so its application to an environment to which a weather-resistant steel bridge cannot be applied is effective.
- The effect of application in an antifreezing agent spraying area can also be expected.

# Conforming to all JIS standards required for bridges.

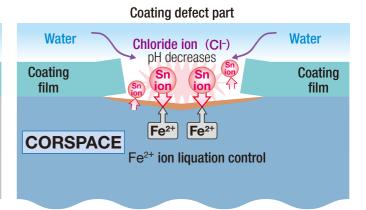
(corresponding to the tensile strength of class 400-570 N/mm<sup>2</sup>)

#### **Conforming to three standards** (steel plate)

- JIS G3101 Rolled steels for general structure (SS)
- JIS G3106 Rolled steels for welded structure (SM)
- JIS G3140 High yield strength steel plates for bridges (SBHS)

A fine amount of Tin (Sn) is added within the range of chemical components permitted by the above JIS standards.

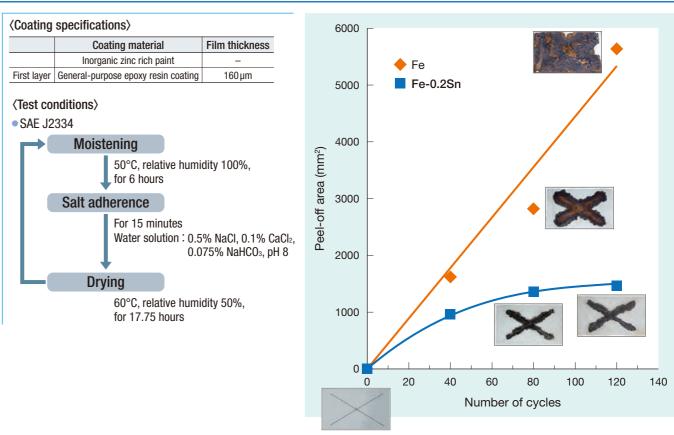
| Symbol of type    | Applied plate thickness (mm) | Chemical component / Mechanical property |  |  |
|-------------------|------------------------------|------------------------------------------|--|--|
| SS400 -CORSPACE   | 6-100                        | In compliance with JIS G3101 SS400       |  |  |
| SM400 -CORSPACE   | 6-100                        | In compliance with JIS G3106 SM400       |  |  |
| SM490 -CORSPACE   | 6-100                        | In compliance with JIS G3106 SM490       |  |  |
| SM490Y -CORSPACE  | 6-100                        | In compliance with JIS G3106 SM490Y      |  |  |
| SM520 -CORSPACE   | 6-100                        | In compliance with JIS G3106 SM520       |  |  |
| SM570 -CORSPACE   | 6-100                        | In compliance with JIS G3106 SM570       |  |  |
| SBHS400 -CORSPACE | 6-100                        | In compliance with JIS G3140 SBHS400     |  |  |
| SBHS500 -CORSPACE | 6-100 *                      | In compliance with JIS G3140 SBHS500     |  |  |


\*SBHS500-CORSPACE: For plate thicknesses exceeding 50 mm, please consult us in advance.

# **CORSPACE**

Mechanism

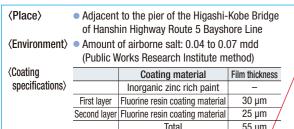
Corrosion of conventional steel progresses due to anode/cathode reaction. In the coating defect part of thin film under water, chloride ions condense and pH decreases, so the progress of corrosion is accelerated. Meanwhile, with CORSPACE, Sn also liquates out at the same time as the anode reaction of Fe (dissolution reaction), and the eluted Sn ions inhibit the elution of Fe ions, thereby preventing the progress of corrosion.


# Coating defect part Water Chloride ion (CI-) Coating film Fe<sup>2+</sup> Conventional steel Elution of Fe<sup>2+</sup> ion

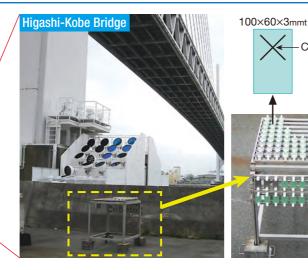


# **CORSPACE**

Corrosion-resistant properties (acceleration test)


# **Evaluation by acceleration test (SAE J2334 test)**



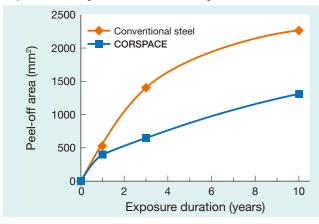

3

Corrosion-resistant properties (actual environment exposure test)

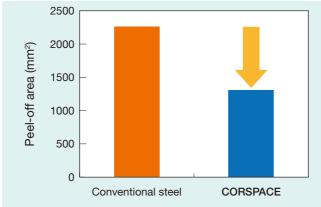
### **Evaluation after outdoor exposure test (Higashi-Kobe Bridge)**







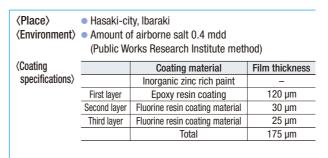

-Cross-cut


Coating film peel-off status around scratched part of horizontal exposure material

|                    | Exposed for 1 year | Exposed for 3 years | Exposed for 10 years |
|--------------------|--------------------|---------------------|----------------------|
| Conventional steel |                    |                     |                      |
| CORSPACE           | 0.17               | 0 (8                |                      |

**Exposure test** [horizontal bottom face]



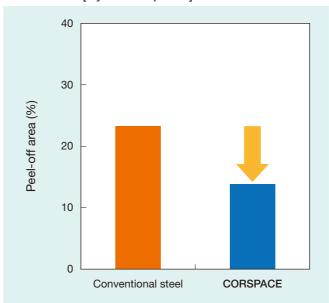

Peel-off area [horizontal bottom face/10 years of exposure]



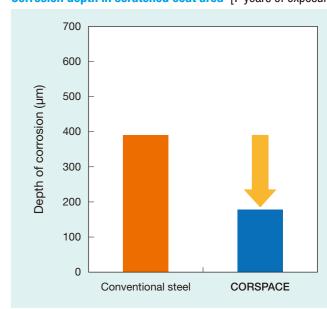
# **CORSPACE**

Corrosion-resistant properties (actual environment exposure test)

#### **Evaluation after outdoor exposure test (Hasaki-city, Ibaraki)**







#### **Results of 7-year exposure test**

| Legends | Conventional steel | CORSPACE |
|---------|--------------------|----------|
|         |                    |          |

#### **Peel-off area** [7 years of exposure]



#### **Corrosion depth in scratched coat area** [7 years of exposure]



6

5

Corrosion-resistant properties (actual environment exposure test)

#### **Evaluation after outdoor exposure test (Okinawa)**

⟨Place⟩ • Waterfront of Okinawa prefecture

⟨Environment⟩ • Equivalent to C5 to CX, the corrosion categories in the ISO12944-2

 $\langle \text{Test condition} \rangle$   $\bullet$  Size of the test piece: 100 x 60 x 3mm<sup>t</sup>

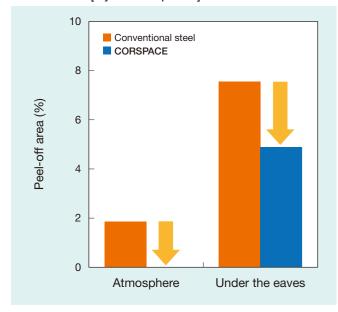
(Coating specifications)

Posture during exposure: Horizontal
 C-5 specification for outer surface
 Coating material

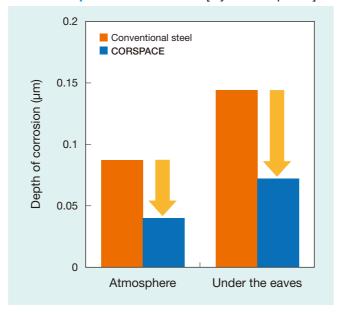
| <b>)</b> | Coating material                                | Film thickness |
|----------|-------------------------------------------------|----------------|
|          | Inorganic zinc rich paint                       | 75 µm          |
|          | Under coat of epoxy resin coating material      | _              |
|          | Under coat of epoxy resin coating material      | 120 µm         |
|          | Middle coat of fluorine resign coating material | 30 µm          |
|          | Top coat of fluorine resign coating material    | 25 µm          |

Exposure under the eaves (without rain wash effects)






(Photo of the inside


#### **Results of 5-year exposure test**

| Legends  Exposure to atmosphere (with rain wash effects)  Conventional steel  CORSPACE  Conventional steel  CORSPACE  Conventional steel  CORSPACE  Conventional steel  CORSPACE | uito di di your expos | uro tost               |                            |                                                      |          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|----------------------------|------------------------------------------------------|----------|--|
| Conventional steel CORSPACE Conventional steel CORSPACE                                                                                                                          | 1 1 -                 | Exposure to atmosphere | e (with rain wash effects) | Exposure under the eaves (without rain wash effects) |          |  |
|                                                                                                                                                                                  | Legends               | Conventional steel     | CORSPACE                   | Conventional steel                                   | CORSPACE |  |
|                                                                                                                                                                                  | · /                   |                        |                            |                                                      |          |  |

#### **Peel-off area** [5 years of exposure]



**Corrosion depth in scratched area** [5 years of exposure]

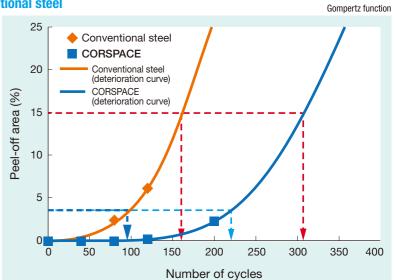


# **CORSPACE**

#### **Recoating time extension effect**

(Steel Highway Bridge Anticorrosion Handbook in March 2014)

| E۱         | valuation valuation | JIS K 5600-8-5:1999<br>Designation of degree of flaking                                             | Pee                                            | l-off ar | ea (%)                 |                               |                     | 2            | Recoating at | unnecessary<br>ter a couple o | of years is plai |    |
|------------|---------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|----------|------------------------|-------------------------------|---------------------|--------------|--------------|-------------------------------|------------------|----|
|            | 1                   | 0                                                                                                   |                                                | 0        |                        | 3 Early recoating is examined |                     |              |              |                               |                  |    |
|            | 2                   | 3                                                                                                   |                                                | 1        |                        |                               | ■ Ro                | coating time | indament     |                               |                  |    |
|            | 3                   | 4                                                                                                   |                                                | 3        |                        | \                             | 1100                | boating time | Juuginent    |                               |                  |    |
|            | 4                   | 5                                                                                                   |                                                | 15       |                        | Degree of peel-off            |                     |              |              |                               |                  |    |
| ■ Fva      | luation of cor      | rosion                                                                                              |                                                |          |                        | 7                             |                     |              | 1            | 2                             | 3                | 4  |
| Evaluation |                     | Generation status                                                                                   | JIS K 5600-8                                   |          | 0.05%                  |                               | u                   | 1            |              |                               |                  |    |
| Evaluation | Generation area (%) | Appearance status                                                                                   | Designation of degree of<br>(corrosion area %) | usung    |                        | 1                             | iso.                | _            |              | 1)                            | (3               | 2) |
| 1          | X<0.05              | No corrosion is found, and coating film is in a sound state.                                        | Ri1<br>(0.05%)                                 | 1        | <u> </u>               | <b> </b>                      | Degree of corrosion | 2            |              |                               |                  |    |
| 2          | 0.05≦X<0.5          | Slight corrosion is found, but the coating film is maintaining the                                  | Ri2<br>(0.5%)                                  |          | 0.5%                   | 1                             | Jree o              | 3            | (            | 2                             |                  | 3  |
|            |                     | corrosion resistant function.                                                                       | (0.5%)                                         |          | <b>(</b>   · · · . · . | ,                             | Deć                 | 4            |              |                               | •                |    |
| 3          | 0.5≦X<8.0           | Corrosion is visible, and the corrosion resistant function is impaired at part of the coating film. | Ri3, Ri4<br>(1.0%, 8.0%                        | 6)       | :8.0%                  |                               |                     |              |              |                               |                  |    |
| 4          | 8.0≦X               | Corrosion has progressed, and the coating film has lost the corrosion resistant function.           | Ri4 or mor<br>(8.0% or mo                      |          |                        | Corrosi                       |                     |              |              |                               |                  |    |


#### **Coating film peel-off area of CORSPACE and conventional steel**

#### ⟨Test conditions⟩

- Coating that simulates the C5 system
- Foundation exposed by incising the coating film in an X-shaped state
- Cyclic corrosion test (SAE J2334)
- Evaluation of coating film peel-off area

#### $\langle \text{Coating specifications} \rangle$

|              | Coating material                               | Film thickness |
|--------------|------------------------------------------------|----------------|
| First layer  | Inorganic zinc                                 | 15 µm          |
| Second layer | Back coat of epoxy resin coating material      | 60 µm          |
| Third layer  | Back coat of epoxy resin coating material      | 60 μm          |
| Fourth layer | Middle coat of fluorine resin coating material | 30 µm          |
| Fifth layer  | Middle coat of fluorine resin coating material | 25 μm          |
|              | Total                                          | 190 um         |





Time for the peel-off area to become 15% (recoating time judgment ③)

For CORSPACE, approximately twice that of conventional steel

7

#### **Examples of applications**



Kesennuma Bay Crossing Bridge



Makiminato Elevated Bridge (Okinawa Prefecture)



Higashi-Harima Nanboku Road (Mizuashi Shintsuji No. 5 Viaduct)



Yodogawa Bridge on National Route 2 (Deck Slab Replacement)



Hanshin Expressway Sambo JCT



Unloader

# Breakdown by order of CORSPACE bridges (calculated by us) as of the end of March 2024

• Ministry of Land, Infrastructure, Transport and Tourism (Regional Development Bureaus, Hokkaido Regional Development Bureau)

: 51 cases (Chubu: 20 cases, Tohoku: 15 cases, Kinki: 6 cases, Kyushu: 4 cases, Hokuriku: 3 cases, Kanto: 2 cases, Hokkaido: 1 case)

Okinawa General Bureau, Cabinet Office: 2 cases Local governments, etc. : 24 cases

: 81 cases

# Weld material

We are offering various types of weld material that correspond to the grades of CORSPACE at NIPPON STEEL WELDING & ENGINEERING CO.,LTD.\*

#### **Exclusive weld material for CORSPACE**

| Ī | Steel type                                                                                     | Coated electrode | Solid wire | Wire w       | rith flux   | Submerged arc weld material |                     |  |
|---|------------------------------------------------------------------------------------------------|------------------|------------|--------------|-------------|-----------------------------|---------------------|--|
|   | Steel type                                                                                     | All position     | Solid Wile | All position | Fillet      | *Butt                       | Fillet              |  |
|   | SS400 -CORSPACE<br>SM400 -CORSPACE<br>SM490 -CORSPACE<br>SM490Y -CORSPACE<br>SBHS400 -CORSPACE | L-55 • PX        | YM-26•PX   | SF-1·PX      | SM-1F·PX    | YF-15 ×<br>Y-D•PX           | YF-800 ×<br>Y-D•PX  |  |
|   | SM520 -CORSPACE                                                                                | _                | YM-55C·PX  | _            | _           | YF-15B ×<br>Y-DM3·PX        | NF-820 ×<br>Y-D•PX  |  |
|   | SM570 -CORSPACE<br>SBHS500 -CORSPACE                                                           | L-60 · PX        | YM-60C·PX  | SF-60 · PX   | SM-60F • PX | YF-15B ×<br>Y-DM • PX       | NF-820 ×<br>Y-DM•PX |  |

\*If you are considering welding with heat input exceeding 7 kJ/mm, please inquire in advance.

#### Example of performance of deposit metal of exclusive weld material for CORSPACE

|                              |      | Chemical component (%) |      |       |       |      |      |     | Tensile pe            | rformance              | Impact per       | formance  |
|------------------------------|------|------------------------|------|-------|-------|------|------|-----|-----------------------|------------------------|------------------|-----------|
| Brand                        | С    | Si                     | Mn   | Р     | S     | Ni   | Мо   | Sn  | Proof stress<br>(MPa) | Tensile strength (MPa) | Temperature (°C) | vE<br>(J) |
| L-55 · PX                    | 0.07 | 0.61                   | 1.10 | 0.012 | 0.003 | _    | _    | Add | 503                   | 607                    | -30              | 145       |
| L-60 · PX                    | 0.07 | 0.56                   | 1.07 | 0.010 | 0.006 | 0.70 | 0.24 | Add | 612                   | 700                    | -20              | 126       |
| YM-26 · PX                   | 0.08 | 0.39                   | 0.97 | 0.005 | 0.011 | _    | _    | Add | 483                   | 571                    | 0                | 133       |
| YM-55C · PX                  | 0.06 | 0.46                   | 1.02 | 0.004 | 0.010 | _    | 0.22 | Add | 521                   | 606                    | 0                | 140       |
| YM-60C · PX                  | 0.05 | 0.48                   | 1.06 | 0.004 | 0.010 | _    | 0.23 | Add | 554                   | 629                    | -5               | 127       |
| SF-1 · PX                    | 0.06 | 0.44                   | 1.19 | 0.013 | 0.006 | _    | _    | Add | 539                   | 612                    | 0                | 136       |
| SM-1F·PX                     | 0.05 | 0.54                   | 1.46 | 0.018 | 0.014 | _    | _    | Add | 510                   | 597                    | 0                | 64        |
| SF-60 · PX                   | 0.05 | 0.55                   | 1.57 | 0.011 | 0.006 | 0.53 | _    | Add | 595                   | 665                    | -5               | 78        |
| SM-60F·PX                    | 0.05 | 0.57                   | 1.80 | 0.014 | 0.010 |      | _    | Add | 567                   | 642                    | -5               | 81        |
| YF-15 × Y-D•PX               | 0.07 | 0.45                   | 1.54 | 0.016 | 0.006 | _    | _    | Add | 511                   | 601                    | 0                | 93        |
| $YF-800 \times Y-D \cdot PX$ | 0.04 | 0.68                   | 1.55 | 0.009 | 0.011 | _    | _    | Add | 415                   | 534                    | 0                | 49        |
| YF-15B × Y-DM3 • PX          | 0.08 | 0.31                   | 1.76 | 0.013 | 0.006 | _    | 0.21 | Add | 553                   | 648                    | 0                | 108       |
| NF-820 × Y-D • PX            | 0.05 | 0.63                   | 1.88 | 0.007 | 0.011 |      | _    | Add | 478                   | 588                    | 0                | 81        |
| YF-15B × Y-DM • PX           | 0.08 | 0.31                   | 1.70 | 0.013 | 0.005 | _    | 0.37 | Add | 595                   | 699                    | -20              | 67        |
| NF-820 × Y-DM • PX           | 0.06 | 0.59                   | 1.81 | 0.005 | 0.011 | _    | 0.40 | Add | 564                   | 662                    | -5               | 70        |

\*Contact information: NIPPON STEEL WELDING & ENGINEERING CO.,LTD.

Shingu Bldg., 4-2 Toyo 2-chome, Koto-ku, Tokyo, 135-0016 JAPAN

TEL: 03 (6388) 9000 FAX: 03 (6388) 9160 www.weld.nipponsteel.com/en/





#### Bolt

Road companies

As the high-strength bolts for CORSPACE, NIPPON STEEL BOLTEN CORPORATION\* is offering "S10TCR"

#### ■ Applicable sizes: M22 (Twist Off type)

aitian (Ctanadand Valuas)

| Chemical Composition (Standard Values) (mass |                 |           |       |           |        |        |           | (mass%)   |        |                   |
|----------------------------------------------|-----------------|-----------|-------|-----------|--------|--------|-----------|-----------|--------|-------------------|
| Chemic                                       | cal Composition | С         | Si    | Mn        | Р      | S      | Cu        | Ni        | Mo, Sn | В                 |
|                                              | COR-BOLT        |           |       |           |        |        |           |           |        | 0.0010            |
| Development Metals                           | COR-NUT         | 0.20-0.25 | ≦0.25 | 0.70-0.90 | ≦0.030 | ≦0.020 | 0.30-0.50 | 0.30-0.50 | add    | 0.0013-<br>0.0028 |
|                                              | COR-BT          |           |       |           |        |        |           |           |        | 0.0020            |

\*Contact information: NIPPON STEEL BOLTEN CORPORATION 4-16 Midorigi 1-chome, Suminoe-ku, Osaka-shi,

: 4 cases

Osaka Prefecture, 559-0022 JAPAN TEL: 06 (6682) 3261 FAX: 06 (6682) 3270

#### ■ Mechanical Properties (Standard Values)

Hardness

20 ~ 35HRC

#### Bolts

Nuts

Class by Mechanical

Property

F10CR

**Mechanical Properties of Test Pieces** 

|                                 | •                       |                           |              |                      |
|---------------------------------|-------------------------|---------------------------|--------------|----------------------|
| Class by Mechanical<br>Property | Yield strength<br>N/mm² | Tensile Strength<br>N/mm² | Elongation % | Reducation of area % |
| S10TCR                          | 900 ≦                   | 1000 ~ 1200               | 14 ≦         | 40 ≦                 |

Guaranteed load

Same as minimum

tension load df bolt

#### **Mechanical Properties of Bolts**

|                     | <u> </u>                |            |
|---------------------|-------------------------|------------|
| Class by Mechanical | Minimum tension load kN | Hardness   |
| Property            | M22                     | пагипезз   |
| S10TCR              | 303                     | 27 ~ 38HRC |

Note, The figure in the table shows the minimum tension load that can with stand up to the bolt fracture when the tension test is conducted by inserting the wedge into the bearing surface of bolt and on the condition of no breakage of bolt head.

#### Washers

| Class by Mechanical<br>Property | Hardness   |
|---------------------------------|------------|
| F35CR                           | 35 ~ 45HRC |